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Abstract voltage impulse incident from the x- direction and having

. ) ) a polarization parallel to the y-axis, and so on. Similarly

A systematic impulse numbering scheme and impulse  the impulses travelling along the y and z-axis are named

splitting operation are developed. The new numbering VL VL VN VR VE V)7, V,** and v * respectively.

scher.ne reveals the physics of the scattering procedqre. These voltage names correspond to Vs, Vi, V11, V1. Vs,

The impulse splitting operation allows new scattering Vi, Va, Vi, Vo, Vi, Vg and Vg in [1]. Table 1 gives the

matrices of special nodes to be derived in a  relationship between the new and old numbering schemes.
straightforward manner. The new reorganized scattering matrix S is:

i 1 -1 1 1]
Introduction 1 1 1 -1

Since P. B. Johns published his first paper on the
symmetrical condensed node TLM scattering [1],
researchers have been using the impulse numbering
scheme given in that paper. The numbering scheme is not §
quite systematic. As a result the scattering matrix elements
donot relate to each other in a systematic manner, and thus
the scattering matrix fails to give special insight into the
physics of the node. Russer has used a different numbering
scheme in [2], thus perceiving the need for improvements
in the numbering scheme, but he did not elaborate on it - -
further, The numbering scheme presented in this paper is
quite systematic, hence it provides insight into the
scattering procedure as well as facilitates the derivation of

new scattering matrices for condensed nodes with special
properties. (1) The 12x12 scattering matrix can be

partitioned in to a 3 x3 matrix system; each
element in that matrix system is a 4 X4 matrix:

S
—
—
1
—
-

The above scattering matrix has four interesting
properties which are the direct benefit of this new impulse
numbering scheme:

Impuise Numbering Scheme

AB
Our new numbering scheme is based on the S=5'=5"= % B A
right-hand rule used in vector calculus. We consider the AB
numbering scheme for the node without stubs first and

then generalize it to the fully loaded node. where A and B are:

The impulses travelling along the x-axis are incident
from either the x- or x+ direction and their polarizations
are parallel to either the y or z-axis, Figure 1. We name A=
these impulses V,™, V,*V,™ and V;™*; V,* stands for the
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Figure 1: A new condensed node impulse numbering scheme.

(2) The matrices in the matrix system are A and B,
and B=AT. This is because the node is
symmetrical, and the right-hand rule is used.

(3) The 4 x4 diagonal matrices of this 3x3
matrix system are zero matrices. This is so
because impulses travelling along one axis are

scattered into the other two axial directions only.
€]

The elements of the second and third row of the
matrix system are the cyclic permutation of the
elements of the first row; this is a direct benefit of

using the right-hand rule.

Impulse Splitting Procedure

The above scattering matrix can be expanded by
logically splitting each impulse of the node into two parts,
say a and b as shown in Figure 2. By replacing the
elements in A and B with their equivalent 2x 2 zero and
identity matrices, the 4 x4 matrices of the above 3 x3
matrix system become 8 x 8 matrices.

AB

S-% ¢ D|,whereA,B,C,DandE are; A = -

B E

1T

Impulse Names New Scheme PB. Johns’ Scheme
Vy"' Vi Vs
173 V, Ve
W Vs Vi1
v V4 Vio
sz- VS VS
|24 Ve Vi
vt \Z Vs
v* Vs Vi2
Ve Vo Vs
v Vio Vs
25 Vi Vo
V},Z+ Viz Vg
Table 1: Relationship between the new and old impulse numbering

scheme for the condensed node. V,* stands for the voltage
impulse incident from the x- direction and having a
polarization parallel to the y-axis, and so on.

This expanded scattering matrix can be used to derive
new scattering matrices for condensed nodes with special
properties. For example, it allows us to find, almost by
inspection, the scattering matrix of a condensed node with
a perfect conducting metallic plate of zero thickness in its
xz-plane, Figure 3, [3].

Special Scattering Matrix

If there is a perfectly conducting metallic plate in the
xz-plane of a condensed node (Figure-3), V,, V4, Vo and
V11 must be zero. To make sure that these voltages are
zero, all the entries in the scattering matrix that will cause
energy to be scattered into them as well as all the entries
that will cause energy to be scattered out of them must be
set to zero. The entries in the scattering matrix that will
cause top-down interaction must also be set to zero.
Finally, because of the presence of the conducting plate,
energy which would normally be scattered to Vg, from V;,
must now go to Vg, and so on. The resulting scattering
matrix S is:
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Figure 2: Logically splitting impulses into two parts, those closer Figure 3: Nielsen’s half-node for § y
to the voltage labels are part @ and the tailing ones are
part b. The total voltage of each individual impulse is
the sum of part @ and part b; V;=V; +V,, and so on.
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This scattering matrix is equivalent to the S, matrix Lossy Node Numbering Scheme
in [3], but is derived with considerably less effort and is
easily permuted to find S, and Sj,. We have generalized this new impulse numbering

scheme for the fully loaded symmetrical condensed lossy
node [4], and its scattering matrix is:

Ax Bx Cx
§$=:1C,A, B, where A,,B,,C,, A, B,.C, A,, B, and C, are 7 x 7 matrices with the elements in the seventh
2 y “*y Py X X X ¥y Y, z
BZ CZ AZ
column being all zeros.

a,, Cy, d, -d,g, b, b, -
a;y Cey b, b, i d, -d g
Cys ay, ~d, d, g, by- by i
A, = Coy Gy v Be=1b, b, =i and  C,=|~d, d, g
hx ex ex ex X
Jx <+ L
L P, | Lk k, | |k, k, |




Impulse Names New Scheme Scheme in [4]
V;E v, v;
i v, Ve
i Vs Vi
5 V4 Vio
Ver Vs Vi3
Vi Ve Vie
Vgx V7 v19
724 Vs Vs
Vv A v,
174 Vio Vs
74 Vi Vip
Vey Viz Vi
Viy Vi3 V17
ng V14 V20
23 Vis Va
v, Vie v,
75 Viy Vo
v, Vis Vs
Ver Vi Vis
Vs Vo Vis
Ve Vo [Z5

Table 2: Relationship between the new and old impulse numbering

scheme for the fully loaded condensed lossy node. V,, and V,,,
stand for voltage impulses coupling with the x-component of
the electric and magnetic fields. Vgx account for the dielectric
loss associated with the x-component of the electric field, and
50 on.

By, C,, A, B, and C, are cyclic permutations of A,,
B, and C,. As an example:

azx ch

axz sz

ch azx

The coefficients in the above A, B and C matrices are:

G,+Y, zZ,
@mn = —Gm+Ym+4+Z,.+4

4
b= n =t = Gy 74

G,+Y, V4

n

C £ -—
mn G,+Y,+4 Z +4

d =i 4

m=m T axz,

fm -Zmdm
gm = pm = Ymbm

Table 2 shows the relationship between the old and
new numbering schemes for the fully loaded condensed
lossy node.

Conclusion

We have used this new impulse numbering scheme
and the impulse splitting operation to derive a number of
scattering matrices for some special condensed nodes.
These special nodes can be used to model the sizes and
positions of metallic boundaries with good accuracy
without using an unnecessarily refined mesh. The impulse
splitting operation can be generalized to model some
boundary properties, such as sharp edges and corners,
finite conductivity, skin effect and implementation of
discrete devices into a TLM network, which can not be
modelled easily and accurately by placing the boundary
half-way between nodes.
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